આપેલ આવૃતિ વિતરણ :

ચલ $( x )$ $x _{1}$ $x _{1}$ $x _{3} \ldots \ldots x _{15}$
આવૃતિ $(f)$ $f _{1}$ $f _{1}$ $f _{3} \ldots f _{15}$

જ્યાં $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ અને $\sum \limits_{i=1}^{15} f_{i}>0,$ હોય તો પ્રમાણિત વિચલન ............ ના હોય શકે 

  • [JEE MAIN 2020]
  • A

    $2$

  • B

    $1$

  • C

    $4$

  • D

    $6$

Similar Questions

જો આવૃત્તિ વિતરણ 

$X_i$ $2$ $3$ $4$ $5$ $6$ $7$ $8$
Frequency $f_i$ $3$ $6$ $16$ $\alpha$ $9$ $5$ $6$

નું વિચરણ $3$ હોય, તો $\alpha=..............$

  • [JEE MAIN 2023]

જો વિતરણનું દરેક અવલોકન જેનું પ્રમાણિત વિચલન $\sigma$, એ $\lambda$, જેટલું વધતું હોય તો નવા અવલોકનોનું વિચરણ શોધો.

જો શ્રેણીમાં  $2 n$ અવલોકન આપેલ છે જે પૈકી અડધા અવલોકનો $a$ અને બાકીના અવલોકનો $-a$ છે. અને જો અવલોકનોમાં અચળ $b$ ઉમેરવવામાં આવે તો માહિતીનો નવો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $5$ અને $20 $ થાય છે તો $a^{2}+b^{2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :

${x_i}$ $6$ $10$ $14$ $18$ $24$ $28$ $30$
${f_i}$ $2$ $4$ $7$ $12$ $8$ $4$ $3$

 

જે શ્રેણીનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ હોય તેવી સમાંતર શ્રેણીના પ્રથમ $n$ પદો માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો